
Extreme Programming

Des Kenny

School of Computing

Dublin Institute of Technology

Kevin Street, Dublin 8, Ireland.
MSc Computing Science

Research Methods Module

Dublin Institute of Technology, School of Computing Report, November 2001

1
Introduction

The purpose of this paper is to briefly introduce the concepts behind the Extreme programming methodology. It is to accompany a presentation, which forms part of the curriculum for the MSc in computing science, DIT. The intended readers are all those associated with the aforementioned course. The research was conducted wholly through web resources.

2 Overview

Extreme programming (XP), despite its name, is a pragmatic approach applicable to modern day programming problems. It was formulated in the early 1990s through discussions between Kent Beck and Ward Cunningham. The first formal project, on which extreme programming practices were used, was a payroll system written by Kent Beck while at Daimler-Chrysler in early 1997. Since then Extreme programming (XP) has gained popularity and has been adopted by thousands of companies world-wide.

3 Core Values

Extreme programming (XP) is an example of what is currently referred to as an Agile or lightweight methodology. It recognises the failings of some of the older heavyweight or monumental methodologies, as being too cumbersome to follow the faster moving development cycles of today. The core values around which XP based are as follows.

· Communication – Vital to XP are communications between fellow developers as well as with the end-users, who drive all requirements and product acceptance.

· Simplicity – All code, requirements and design should be stated as simply as possible. This results in maintainable, quickly delivered and focused solutions.

· Feedback – Schedules, progress, approval are constantly feedback from the users to developers and vice versa.

· Courage – This is the courage to continue along the correct path. XP is recognised as been difficult to adopt because of the extra discipline needed by all involved.

4
Extreme Programming Cycle

There are many facets to the Extreme programming (XP) methodology, the details of many go beyond the scope of this document. However the following is a high level description of the iterative cycle used as part of the XP methodology. The cycle should be as short as possible aiming for many small product releases.

[image: image1.jpg]Test Senarios

User Stories New User Story

Requirements ProjectVelocity Bugs
; Sysem Release Latest Customer
Architecturaligioe, Release “pin” [7 -0 Tversion, Acceptance approval, Small
Spike * Planning Tests e
Uneertain Confident Next lteration
Estimates. Estimates.

‘Spiké

Figure 1 - Extreme programming cycle
The cycle is composed of the following stages

· User Stories - The cycle starts with the compilation of User Stories, which are 3 or 4 sentence statements of desired functionality and are written on cards. These are similar to Use Cases, but differ in the level of detail needed. Each story should ideally take between 1 and 3 weeks of ideal development time. Ideal development time assumes that there are no distractions. These stories drive the creation of the Acceptance Tests and focus on users needs and not technical issues.

· Release Planning – The release planning stage is when the developers meet with the users to decide which pieces of functionality are to be implemented first. The User Story cards are laid out on the table in order of user preference. The developers estimate, again in ideal development time, how long each piece of functionality will take and so determine which pieces of functionality can be included as part of this release.

· Spike – This is a throwaway solution developed to address technical/design difficulty.

· Iteration – Iterations should take between 1 and 3 weeks to complete. At the start of all iterations, there is an iteration meeting, in which the developers evaluate the chosen User Stories and create task cards. Each task card should take 1 to 3 days to complete. The release plan may be re-visited if it is found that the iterations are longer than initially estimated. Unit test code for each task is written before the task is started and automated suites of tests are periodically run to verify code function. Ownership of the code is shared amongst all of the developers and any of them can make changes. All team members are encouraged to constantly integrate their code.

· Acceptance Tests – These are created from the User Stories although each story may have several acceptance tests. The users who created the stories indicate the validity of the acceptance tests. The execution of the acceptance tests is automated and the score for the test is published to the team. Quality assurance is vital to XP and is not done by a separate team, but rather by the development team.

· Small Release – These are key to the XP methodology. This results in rapid feedback from the users to developers and also keeps the customer notified and reassured of the progress. This means that less unneeded or misunderstood functionality is added and less time is wasted.

Conclusion

Extreme programming is a modern methodology and one, which we will, no doubt, hear a great deal more about in the future, given its suitability to modern software projects and its recent widespread adoption. It is particularly well suited to small teams working in close proximity and results in simple maintainable and consequently, cheaper software systems. It does however require that an expert user participates in the development cycle and disciplined dedicated developers are involved. It is not suited to larger teams.

References
BECK, K. (2001) “Extreme Programming a gentle introduction”, http://www.extremeprogramming.org

Accessed November 2001

JEFFRIES, R. (2001) “An Extreme Programming Resource”, http://www.xprogramming.com
Accessed November 2001
3

